DIRTREL: Robust Trajectory Optimization with Ellipsoidal Disturbances and LQR Feedback
نویسندگان
چکیده
Many critical robotics applications require robustness to disturbances arising from unplanned forces, state uncertainty, and model errors. Motion planning algorithms that explicitly reason about robustness require a coupling of trajectory optimization and feedback design, where the system’s closedloop response to bounded disturbances is optimized. Due to the often-heavy computational demands of solving such problems, the practical application of robust trajectory optimization in robotics has so far been limited. We derive a tractable robust optimization algorithm that combines direct transcription with linear-quadratic control design to reason about closed-loop responses to disturbances. In the case of ellipsoidal disturbance sets, the state and input deviations along a nominal trajectory can be computed locally in closed form, thus allowing for fast evaluations of robust cost and constraint functions. The resulting algorithm, called DIRTREL, is an extension of classical direct transcription that demonstrably improves tracking performance over non-robust formulations while incurring only a modest increase in computational cost. We evaluate the algorithm in several simulated robot control tasks.
منابع مشابه
DIRTREL: Robust Nonlinear Direct Transcription with Ellipsoidal Disturbances and LQR Feedback
Many critical robotics applications require robustness to disturbances arising from unplanned forces, state uncertainty, and model errors. Motion planning algorithms that explicitly reason about robustness require a coupling of trajectory optimization and feedback design, where the system’s closedloop response to bounded disturbances is optimized. Due to the often-heavy computational demands of...
متن کاملRobust Direct Trajectory Optimization Using Approximate Invariant Funnels
Many critical robotics applications require robustness to disturbances arising from unplanned forces, state uncertainty, and model errors. Motion planning algorithms that explicitly reason about robustness require a coupling of trajectory optimization and feedback design, where the system’s closed-loop response to disturbances is optimized. Due to the often-heavy computational demands of solvin...
متن کاملHierarchical Decentralized Robust Optimal Design for Homogeneous Linear Multi-Agent Systems
This paper proposes novel approaches to design hierarchical decentralized robust controllers for homogeneous linear multi-agent systems (MASs) perturbed by disturbances/noise. Firstly, based on LQR method, we present a systematic procedure to design hierarchical decentralized optimal stabilizing controllers for MASs without disturbances/noise. Next, a method for deriving reduced-order hierarchi...
متن کاملAn adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system
This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via ...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کامل